A study of the separating property in Reed-Solomon codes by bounding the minimum distance

نویسندگان

چکیده

Abstract According to their strength, the tracing properties of a code can be categorized as frameproof, separating, IPP and TA. It is known that, if minimum distance larger than certain threshold then TA property implies rest. Silverberg et al. ask there some kind capability left when falls below threshold. Under different assumptions, several papers have given negative answer question. In this paper, further progress made. We establish values for which Reed-Solomon codes do not posses separating property.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

study of cohesive devices in the textbook of english for the students of apsychology by rastegarpour

this study investigates the cohesive devices used in the textbook of english for the students of psychology. the research questions and hypotheses in the present study are based on what frequency and distribution of grammatical and lexical cohesive devices are. then, to answer the questions all grammatical and lexical cohesive devices in reading comprehension passages from 6 units of 21units th...

a study of the fifth child and ben in the world by doris lessing in the light of julia kristevas psychoanalytic concepts

این مطالعه به بررسی عوامل روانشناختی کریستوادردو رمان دوربس لسینگ،فرزندبنجم و بن دردنیای واقعی می بردازد.موفقیت یا شکست کاراکترهادر تکمیل شکست تتیزی یه کمک بدر وهم از مهم ترین دغدغه محقق می باشد.به بررسی تحلیل روانشناختی تمامی کاراکترها خصوصا بن برداخته و به دنبال نشانه هایی از جامعه شیشه ای کریستوا می باشد.

15 صفحه اول

Computing Error Distance of Reed-Solomon Codes

Under polynomial time reduction, the maximun likelihood decoding of a linear code is equivalent to computing the error distance of a received word. It is known that the decoding complexity of standard Reed-Solomon codes at certain radius is at least as hard as the discrete logarithm problem over certain large finite fields. This implies that computing the error distance is hard for standard Ree...

متن کامل

Unambiguous Decoding of Generalized Reed–Solomon Codes Beyond Half the Minimum Distance

The Schmidt–Sidorenko–Bossert scheme extends a low-rate Reed–Solomon code to an Interleaved Reed–Solomon code and achieves the decoding radius of Sudan’s original list decoding algorithm while the decoding result remains unambiguous. We adapt this result to the case of Generalized Reed– Solomon codes and calculate the parameters of the corresponding Interleaved Generalized Reed–Solomon code. Fu...

متن کامل

Efficient decoding of Reed-Solomon codes beyond half the minimum distance

A list decoding algorithm is presented for [ ] Reed–Solomon (RS) codes over GF ( ), which is capable of correcting more than ( ) 2 errors. Based on a previous work of Sudan, an extended key equation (EKE) is derived for RS codes, which reduces to the classical key equation when the number of errors is limited to ( ) 2 . Generalizing Massey’s algorithm that finds the shortest recurrence that gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Designs, Codes and Cryptography

سال: 2022

ISSN: ['0925-1022', '1573-7586']

DOI: https://doi.org/10.1007/s10623-021-00988-z